首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   228篇
  免费   5篇
  国内免费   1篇
林业   3篇
农学   1篇
基础科学   1篇
  28篇
综合类   9篇
农作物   1篇
水产渔业   43篇
畜牧兽医   135篇
植物保护   13篇
  2022年   1篇
  2021年   28篇
  2020年   7篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   7篇
  2015年   24篇
  2014年   19篇
  2013年   16篇
  2012年   6篇
  2011年   10篇
  2010年   6篇
  2009年   8篇
  2008年   14篇
  2007年   9篇
  2006年   10篇
  2005年   6篇
  2004年   10篇
  2003年   14篇
  2002年   13篇
  2001年   4篇
  2000年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1953年   1篇
排序方式: 共有234条查询结果,搜索用时 625 毫秒
31.
Eight lactating Holstein cows were divided into two groups ( n  = 4) and used in a double reversal trial with three periods of 14 days each, to evaluate diets containing propylene glycol (PG) and ruminally undegradable protein (RUP) blend on milk yield and composition, ruminal fermentation and blood metabolism. The control diet contained 20% chopped Sudangrass hay, 20% cubed alfalfa hay, 12% corn silage, and 48% of the respective concentrate mixtures (dry matter basis). The experimental diet (PG + RUP) partially replaced the concentrate mixture from the control diet with 1.4% PG and 2.1% RUP. Both diets contained about 16% crude protein and 71% total digestible nutrients. Dry matter intake was similar between the two diets. Daily production of milk, milk lactose and milk solids-not-fat increased by 9.0%, 11.3% and 9.3%, respectively ( P  < 0.1), for cows fed diets with PG + RUP; milk composition was unchanged. Although the concentration of ruminal total volatile fatty acids was unchanged, the proportion of propionic acid increased, and the proportion of acetic acid decreased with PG + RUP. The concentration of ruminal ammonia nitrogen and number of ciliate protozoa was not significantly affected by PG + RUP. The concentration of glucose in blood plasma increased, the concentration of urea nitrogen was unaffected, and the concentration of some essential free amino acids decreased with PG + RUP. It is suggested that these changes might be caused predominantly by PG, and the addition of PG may exert a favorable effect on milk production through increased metabolism.  相似文献   
32.
Accumulating data suggest a relationship between chemerin and energy metabolism. Our group previously described gene cloning, expression analysis and the regulatory mechanism of chemerin and its own receptor in mice and cattle. The objective of the present study was to investigate the physiological effect of chemerin on endocrine changes and energy metabolism in sheep using a biologically stable chemerin analog. The chemerin analog was intravenously administrated (100 or 500 µg/head) to sheep, and plasma insulin and metabolites (glucose, nonesterified fatty acids (NEFA), triglyceride, total cholesterol and high‐density lipoprotein (HDL) cholesterol) were analyzed. The chemerin analog dramatically increased the insulin levels, and glucose levels were decreased. NEFA levels were slightly decreased at 20 min but then increased gradually from 60 to 180 min after analog administration. In addition, injection of the chemerin analog immediately increased triglyceride and total cholesterol but not HDL levels. These results suggested that chemerin analog regulated insulin secretion related to glucose metabolism and the release of triglycerides in sheep in vivo. This study provides new information about endocrine and metabolic changes in response to chemerin in sheep.  相似文献   
33.
34.
35.
Population size of soil ammonia-oxidizing bacteria (AOB) was quantified by real-time PCR in a long-term (16 years) field experiment under different fertilizer managements. AOB population sizes in mineral nitrogen-fertilized soils and organic manure-fertilized soil were 10.3 and 3.1 times, respectively, that of the control, while phosphorus and potassium fertilization had no significant effect. On the other hand, the AOB specific nitrification potential (soil nitrification potential per AOB cell) was significantly higher (P < 0.05) in organic manure-fertilized soil than in mineral-fertilized soils and the control, indicating that AOB was likely more metabolically active in organic manure-fertilized soils than in mineral nitrogen-fertilized soils after long-term application.  相似文献   
36.
37.
38.
Excessive stress response causes disability in social life. There are many diseases caused by stress, such as gastrointestinal motility disorders, depression, eating disorders, and cardiovascular diseases. Transient receptor potential (TRP) channels underlie non-selective cation currents and are downstream effectors of G protein-coupled receptors. Ca2+ influx is important for smooth muscle contraction, which is responsible for gastrointestinal motility. Little is known about the possible involvement of TRP channels in the gastrointestinal motility disorders due to stress. The purpose of this study was to measure the changes in gastrointestinal motility caused by stress and to elucidate the mechanism of these changes. The stress model used the water immersion restraint stress. Gastrointestinal motility, especially the ileum, was recorded responses to electric field stimulation (EFS) by isometric transducer. EFS-induced contraction was significantly reduced in the ileum of stressed mouse. Even under the conditions treated with atropine, EFS-induced contraction was significantly reduced in the ileum of stressed mouse. In addition, carbachol-induced, neurokinin A-induced, and substance P-induced contractions were all significantly reduced in the ileum of stressed mouse. Furthermore, the expression of TRPC3 was decreased in the ileum of stressed mouse. These results suggest that the gastrointestinal motility disorders due to stress is associated with specific non-selective cation channel.  相似文献   
39.
40.
In order to investigate the energy expended in chewing during eating and rumination in sheep fed timothy or sudangrass hay at the same intake level, the energy expenditure of the head was measured using the arterial-venous difference technique and that of the whole body was measured using an open-circuit, indirect respiration calorimeter. There was no difference in the per-chew energy expenditure between timothy hay and sudangrass hay during eating and rumination, but for both types of hay there was a difference in energy expenditure between eating (0.25 J per chew per kilogram body weight) and rumination (0.18 J per chew per kilogram body weight). There was no effect of time period after feeding on the energy expended in one chew during eating and rumination. On average, for a given type of hay, the energy expended in chewing during eating + rumination accounted for 4.9% of the daily energy expenditure of the whole body.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号